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This study is an attempt to trace the development of methods used in 
solving the problem of stress-strain relations in work-hardening 

plastic materials. 

This review does not deal with problems of large deformations, 

thermodynamics of deformations, or questions related to time-dependent 

properties of materials. Neither does it discuss methods of solving 

boundary-value problems on the basis of this or that plasticity law. 

Thus, while remaining within a fairly narrow scope of problems, we 

were as much as possible attempting to describe that logical’path of 

the evolution of plasticity theory, which in a reasonably short period 

of time led researchers from the simple Hencky-Nadai theory to the 

contemporary, rather broad concepts, For the sake of a continuous 

description, we have sometimes found it necessary to sacrifice the 

mere history of the problem. 

In order not to obstruct this presentation with unnecessary details, 

we will only describe contributions which we consider to be the more 

important ones, Moreover, it should be ,noted that in reference to 

these studies we found it sometimes convenient to change somewhat the 

form of presentation of the particular source, without, of course, 

changing the essence of the material.Specifically. in all instances 

where the original source describes tensorial relations, we are con- 

sidering the relationship between the corresponding deviators. This 

interchange cannot cause any misunderstandings, since an independence 

of small plastic deformations from the median pressure is usually 

assumed, and at the same time a consideration of the immediate rela- 

tion between the deviators is more convenient. especially when a 

vectoral presentation of tensors is used. 

The origin of the plasticity theory of an initially isotopic material 

with strain hardening is contained in the most simple mathematical theory 

of the 1920’s. At that time, after the appearance of a number of papers, 
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among which the leading place was occupied by the works of Hencky tl 1 
and Nadai [ 2 ] , the following hypothetic law of relation between stress 
and strain for elastic-plastic material was formulated: 

Sij = 2G,3ij, dI2 > 0, 

dS,, = 2C&$, dl:! G 0, 
I, = + 2 Sij3 = $ Sij Sii 

where 3. is the stress deviator, 3ii, the strain deviator, Gs the secant 
“J 

modulus of the curve illustrating the dependence of the shear stress 

from shear strain obtained in a pure shear experiment, G is the elastic 

shear modulus. Further, it was determined by various experiments, among 

which those performed by Bridgman [3 1 were the most fundamental ones, 
that in small deformations 

a=Ke (2) 

with a high degree of accuracy. where u is the mean or hydrostatic 

pressure, K is the elastic proportionality coefficient, e is the dilata- 

tion. Precisely the circumstance that the volume change is elastic, per- 

mitted to reduce the task of determining the relation between stress and 

strain to the task of establishing relations between the deviators of 

stress and strain, which is what was done in the law (1). 

Lacking experimental data on work-hardening materials under combined 

stress, the only guidance available was intuition and, where possible, 

drawing of inferences from such well-known properties as described by 

the generalized Hooke’s law and the curve of simple tension-compression 

or torsion of plastic work-hardening materials, Hence, it is understand 

able that the above law (1) differs from the elastic law only insofar 

that instead of the constant modulus A a variable coefficient G is 

introduced. More cannot be deduced from generalized Hooke’s laws and the 

remainder of the formula (I) is essentially a generalization of the pro- 

perties of such a curve. properties of such a curve with respect to 

stress-strain relations can be expressed by 

o =E X SEX 

during a continuous increase of stresses, an by 

de, = El& X 

during a decrease of stresses, following their continuous increase. 

Thus, the increase or decrease of stress OX can serve as criterion 

for the selection of one or another relation. It could be stipulated 

that when do%> 0, the first relation is to be used. and When doX 4 0. 

the second. However, a consideration of the negative values of oZ 

introduces a correction into this criterion, as it is easily understood 

that for simple tension-compression the sign of the expression QXdoX= 

% d (0,‘) will serve as a general criterion. Hence, the sign of the 

quantity axduE in simple tension-compression serves as criterion of 
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whether the material is governed by the law of the curve or by the 

elasticity law, i.e. serves as a loading criterion. 

Generalizing the expression ox dox for complex loading, it would seem 

natural to replace it by aijdoij where uij is the stress tensor. But 

this would not be correct, since oijduij= SijdSij + 30 do and already 

then [ 3 ] it was known, that the mean pressure u does not influence 

plasticity in small deformations. It follows that without contradicting 

the experiment in uniaxial loading, the value (or to be more exact, the 

sign of the value) Sijd Sij = d12, can be, for all general purposes, 

taken as the loading criterion, which is precisely what we see in the 

Hencky-Nadai law, 

Simplicity of the Hencky-Nadai law attracted numerous researchers, 

and based on that law it was possible to develop a fairly simple process 

of successive approximations (11’ iushin’s method [ 4 1 1 for boundary value 

problems. At the same time it became necessary to verify the Hencky- 

Nadai law experimentally. A number of articles was devoted to that 

subject (see series of articles in collection [ 5 I ). It was experiment- 

ally determined, that when a proportional increase of stress takes place 

at every point of the body, then the Hencky-Nadai law, as a whole, satis- 

factorily corresponds to the experimental data. At the same time, how- 

ever, small systematic deviations were observed, which (Lode’s diagram) 

indicated some inadequacy of the law. 

The essence of the Hencky-Nadai law is the condition of proportion- 

ality of stress and strain deviators. This postulate can be substituted 

by a more general one, namely that the strain deviator is a function of 

the stress deviator 

Based upon considerations of tensor dimensions, it can be shown [6 ] 

that this corresponds to the assumption 

3ij = F (~‘2, 1~~) IP (ZZ, 1~~) Sij + Q (I,, 1~~) Zstij] 

where 
I2 = $ sijsij, 13 = $ SijSj&,, tij = si,S,j - f I2Sij 

This generalization of the Hencky-Nadai law was made by Prager [‘I I, 

who showed that an acceptance of this generalization eliminates the 

previously discussed inadequacy of the Hencky-Nadai law, 

Both. the Hencky-Nadai law, which is frequently called the law of 

small elastic-plastic deformations, as well as the Prager law are 

characterized by finite relations between stresses and strains. Later on 

such plasticity laws were called laws of deformation. 

Laws of deformation are the simplest variety of plasticity laws. In 

a general case stresses and strains may be related by some integro- 
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differential operations. The simplest class of such general relations 

are the linear tensor relations, i.e. relations in which tensor matrices 
are related by some linear operators, Prager [8 1 noted that if we stay 
within the framework of linear tensor relations, every plasticity law 

can be represented in the general form: 

L I(‘,,)1 = L’ [fLJij)J f:,) 

where tsij), (S,,) are the deviator matrices and L and L’ are linear, 

scalar operators. 

While the Hencky-Nadai law is a special case of the relation (5), the 

law (3) cannot be represented in this form (5) and is thus an example of 

the simplest non-linear tensor relationship. 

The preference which is given to the Hencky-Nadai law, compared to 

other plasticity laws which can be deduced on the basis of (5), is due 

to its simplicity and relatively good correspondence to experimental 

data. Moreover, in 1947 Il’iushin [9 ] reported that if a proportional 

increase of deviators of stress or strain takes place at every point of 

the body, then all plasticity laws that are deducible from (5) will 

coincide with the Hencky-Nadai law, and the latter, in the case of such 

loading, can be considered a general law in the class of linear tensor 

plasticity laws, This type of loading at a point we will call in the 

future simple loading. 

To justify subsequent calculations on the basis of the Hencky-Nadai 

formula, conditions still had to be-found that would produce a simple 

loading at every point of the body. This problem was partially solved by 

Il’iushin [ 10 1, assuming the incompressibility of the material both in 

the elastic and in the plastic ranges, as well as an exponential law of 

the uniaxial loading curve. It was proved that with the given limita- 

tions, the loading will be simple at every point of the body. provided 

the external forces increase in proportion to one parameter (simple 

loading theorem). 

An important place among plasticity problems is occupied by such 

problems, for which the loading differs considerably from the previously 

mentioned simple loading process (stability problems, for example), so 

that the application of the Hencky-Nadai or of the Prager laws becomes 

unjustified. Even though combined loading tests conducted in those times 

offered, for all technical Purposes, a sufficient basis of adequacy of 

the deformation theory, insofar as it did correspond with the test data, 

the applicability of the deformation theory to loading. which differed 

considerably from simple loading, was questionable in view of the fact 

that according to the deformation theory, a rapid change of stress re- 

sults in an equally rapid change of deformations. This condition, .while 

true for an elastic body, results in a contradiction of the basic 
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principles of the mechanics of solids when applied to some types of 

loading in a plastic range. This was for the first time demonstrated by 

Handelman, Lin and Prager [ 11 1 . . 

All explorations of the mechanical properties of solids, and partic- 

ularly of plasticity properties, are always based on the supposition 

that small changes of the external influences will bring about small 

effects, Thus, if two identical bodies, with identical properties, are 

loaded by two methods which differ little from each other, then the de- 

formations of these bodies at each given moment must. too, differ very 

,little. Let us assume that at some point of the body a state of stress 

is reached, as a result of continuous loading, and further, that I2 

after subsequent loading at this point remains constant, i.e. dIz = 0: 

According to Hencky-Nadai. this is a limiting case differentiating bet- 

ween loading and unloading, and hence such loading may be called neutral. 

Generally speaking. no matter what the criterion of loading, a neutral 

loading is a loading where the quantity which expresses the loading 

criterion remains constant. It would be natural to expect from real 

materials in case of such loading that the laws of plasticity and elas- 

ticity would coincide. However, the truth of the matter is that not a 

single law of deformation theory satisfies this condition, which was 

termed the continuity condition. For simplicity purposes, we will, follow- 

ing Prager [ 12 1, consider here only the Hencky-Nadai law. 

Assuming that the loading is neutral, we will rewrite the law (1) in 

a differential form: 

dG, 
dS,j = 2Gsd3ij + 2 dlz‘ dI,3ij 

Since df2 = 0. it follows that (1) at neutral loading will be 

dSii = 2Gsd3, j 

On the other hand, the elasticity law stipulates that 

dSii = 2Gd3,j 

and since G f Gs, (6) and (7) do not coincide. 

(71 

This situation could have been possibly avoided by selection of a 

different loading criterion. However, it turns out that the loading 
criterion is not arbitrary, but is determined by the very law of rela- 

tions between stresses and strains. Obviously the work of stress in the 

plastic components of strain (total work minus work in elastic strain 

components) is irreversible, which is also 

tion itself, which cannot be asserted for 

the plastic range the condition 

dWp> 0 

has to be satisfied, in which the equality 

true for the plastic deforma- 

the total work. Therefore. in 

(81 

sign is only possible in the 
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trivial case when the increments of plastic deformations themselves equal 

zero (we are not considering perfectly plastic materials). Condition (8) 

is usually known as the irreversibility condition. Applying this condi- 

tion to law (1). we will necessarily arrive at dIq > 0 as our loading 

criterion. Indeed, from (1) we find 

and condition (8) requires that 

in the plastic range. If, which is true for most materials, we assume 

that during loading 

dGS 
-dl; > 0 

(9) 

(10) 

then the square bracket in (9) is positive and the irreversibility con- 

dition results in d12 > 0 during loading. 

Thus, no other criterion (at least for materials that satisfy condi- 

tion (10)) can be proposed for the Hencky-Nadai law and the last possi- 

bility to satisfy the condition of continuity is eliminated. 

The same can be proved for a general case of the deformation theory as 

well. The continuity condition in any such law is not satisfied, and it 

was the search for a plasticity law which would satisfy the continuity 

condition that greatly influenced the development of the so-called flow 

theory or the incremental theory of deformation. 

The above-mentioned work of Handelman, Lin and Prager should be con- 

sidered as the initial step for the formulation of such a theory. It 

should be mentioned that it was discovered only later, that Laning had, 

as early as 1942, proposed in an unpublished paper the flow theory in 

its simplest form. While Laning’s theory was a generalization of the 

Reuss [13 ] theory and hence based ultimately on hydrodynamic analogies, 

the theory that was proposed by Handelman, Lin and Prager was called flow 

theory only by inertia and was derived from other considerations. It 
should have been more correctly called a theory of increments of deforma- 

tions or the differential theory of plasticity. 

The derivation of stress-strain relations incorporated in the last 

paper can be interpreted as follows. It is assumed that: (1) the incre- 

ment of the strain deviator is fully determined by the stress deviator 

and its increment; (3) this relation is linear with respect to the incre- 

ments of the components of the deviators of stress and strain: (3) the 
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continuity condition is valid and, finally, (4) d12 > O.is the critical 
loading criterion, 

It follows from the first two conditions that 

dSij = Ai jk@ke (11) 

where A ijke depend on the stress deviator only. Assuming that 

dStj = d3, jv + d3, jp 

where d5jj” = dSij /2G is the reversible elastic part. and d3tjp is the 
non-reversible plastic part, we obtain for d12 > 0 

d3tjP = CijPedS~e 

where C ijke' &S Well BS A.. r_rke’ is a fourth rank tensor depending only on 
s 

ij’ 

It follows from the continuity condition at neutral loading that 
C. 

xjkedSke 
= 0 when d12 = 0. Since d12 = 0 means that SkedSk = 0, a 

simultaneous inversion of two linear forms with respect to &he leads us 

to 

C ijks= GijSks 

and hence 

Tensor analysis permits to conclude that 

Cij = P (129 IS*) Sij + Q (18, Lg) Zd,j 

is the most general form of G. . . 
‘J 

(13) 

But if we assume that I3 has but little influence on the deformation, 
then we can consider Cij a function of I2 only, so that 

W2 > 0) 
(d& < 0) 

This is the simplest form of the law, as proposed by Laning. 

Following the work of Handelman, Lin and Prager. the attention of re- 
searchers was on one hand directed toward experimental checking of the 
law (14) at complex loading, whereby most of the subsequent experiments 
confirmed that this law is closer to reality than the deformation theory. 
Theoretical research was continued, on the other hand, the purpose of 
which, essentially, was to broaden the differential law of plasticity 
for an arbitrary loading criterion. An increasingly important role in 
this research was assigned to the vectorial tensor representation. 

Any tensor having n components, as any system of n numbers, can be 
represented in infinitely many ways in ann-dimensional vectorial space. 
If among the n components, r < n are independent, then the corresponding 
vector is located in a subspace having r dimensions. In this manner, at 



any given point of the body, both the states of stress and strain can be 

represented. Taking advantage of the numerous possibilities of vectorial 

tensor representation, the correlation between the tensor and vector 

systems can be so determined, that not only the tensors are represented 

by vectors, but that there is also a vectorial representation of the 

most important tensorial operations. In our case of the stress-strain 

state, it is convenient to proceed in the following way, 

We place the stress vector P with components pi in correspondence with 

the stress deviator Sij, and the strain vector 3 with components 3i with 

the strain deviator 3ii, in accordance with the law 

PI = Slit p2 = s22, p3 = G.3, p4 = s13, *. - , ptt L- 532 

31=311, 3% = 322, 33 = 33% 31 = 313, . . . ) 39 = c-&as ($5) 

Inasmuch as the stress and strain deviators have, in the most general 

case, only five independent components, the above-mentioned vectors P 

and3are in reality in a five-dimensional subspace of the nine-dimen- 

sional space. For some theoretical investigations it is essential to 

consider just that five-dimensional vectorial space as a basic space, but 

then the relations between the vector and tensor components are not as 

simple as in (15). 

Further in the text we will .,.ddy the relation between the Stress 

deviator and the plastic part of the strain deviator 
s.. 

3ijp = 3ii - 3ri = 3ij - -$ 

and we will put the plastic strain vector ap in correlation to the 

deviator 3ijp , which is easily determined on the basis of (15) as 

When the dependence of tip on P for an 

termined, the problem of the relation of 

arbitrary loading path is de- 

3 and P is also solved. 

In the process of deformation the tip of each vector describes a 

certain path. The paths described by the tips of the vectors P, 3 and ap, 

we will call loading,strain. and plastic strain paths, respectively. 

A special place among the loading paths is occupied by such a loading 

path, along which the stress deviator increases proportionally to one 

parameter. We have referred above to such loading as simple loading. In 

simple loading the trajectory of the stress vector (loading path) is a 

position [or radius ] vector; the corresponding path of plastic deforma- 

tion and of total deformation accordingly, will also be radial, whose 

direction coincides with the loading path and, independently of the 

loading direction. 
P 

‘3=2c, (16) 

In fact, for simple loading from natural state, the Hencky-Nadsi law 
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is valid to a sufficient degree of accuracy, and it is easy to see that 

on the basis of (15) the vectorial representation of this law coincides 

with (16). Thus, the vectorial space is isotropic with respect to any 

simple loading. Or, in other words, the properties of the relation bet- 

ween stress and strain vectors for simple loading are invariant with 

respect to the rotation group in vectorial space. 

Let us now consider some complex loading paths. For such paths, most 

likely, the same invariability is true, which now should be naturally 

complemented with the invariability with respect to the reflection of 

trajectories in all possible planes and directions. The hypothesis con- 

cerning the invariability of vectorial space was originally formulated 

by 11’ iushin [ 14 ] and called by him the postulate of isotropy. It should 

be noted that Il’iushin formulated the postulate of isotropy as applied 

to the above mentioned five-dimensional vectorial space, where each CO- 

ordinate is independent. But inasmuch as the space with which we are 

dealing (15) can be interpreted as a space in which such a five- 

dimensional space is imbedded, the isotropy postulate retains here the 

same sense: if some loading path is obtained from a given path (to which 

the given deformation path corresponds) through some operation of rota- 

tions and reflections (orthogonal transformation), then the same opera- 

tion leads to the corresponding deformation path derived from the given 

deformation path. Or, in other words, the inner geometry of the deforma- 

tion path is entirely determined by the inner geometry of the loading 

path, and vice versa. 

The postulate of isotropy leads us to more specific forms of the 

general tenso-linear relation (5). Using this postulate, only five 

scalar functions of the invariants of the inner geometry of the loading 

path or deformation path (Il’iushin’s five-term formula) can be unknown, 

as compared to an infinite number of scalar functions in relations (5). 

We note that if the isotropy postulate is valid for the stress-strain 

relation, it is also valid for the relation between the vectors of stress 

and plastic strain. 

Let us return now to the question with which we are concerned regard- 

ing the connection’ between the loading criterion and the strass-strain 

relation. 

It is known from numerous experiments with a sufficient degree of 

accuracy, that plastic deformations begin to appear in an initially 

isotropic material whe’n the value of the second invariant of the stress 

deviator I2 increases beyond a certain critical value 

I2 = $ k2 (17) 

In vectorial space this condition is represented by a sphere of 
radius k. Indeed, by definition 

Iz = +csij2 
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and since according to (15) c Szij = 1 pi’, hence 

(19) 

Accordingly, condition (17) can be rewritten as 

1 PI=k (20) 

Let the magnitude of the stress vector in the process of a subsequent 

change of stresses become somewhat larger than k. If the body were to be 

unloaded now (a homogenous state of stress is assumed), then the 

appearance of new plastic deformations in such a body which is plastic- 

ally deformed, will not correspond to (17) any more. This will be some 

new closed surface in vectorial space which is cutomarily called loading 

surface (or flow surface t). Such a characteristic surface exists at 

each loading moment. It separates all elastic states, i.e. those states 

which can be reached from the given one without change of the plastic 

part of the deformation. Shape and size of that surface change with the 

change of stresses, if at the same time a change of the plastic part of 

the deformation takes place, and can be analytically represented as 

f (Sll, 822, * * . ,3 fp . * . , 3g = const (21) 

Function f is usually called the loading function. 

It is known from experiments, that a material can be elastically de- 

formed from any state (elastic unloading). Hence it follows that in a 

continuous deformation process (3” changes continuously), the loading 

surface changes in such a manner that it passes all the time through the 

tip of the stress vector. The point on the loading surface which is 

touched by the tip of the stress vector in the plastic deformation 

process, we will call in the future the loading point. 

For changes of 3P at each given moment it is necessary to pass out- 

side the loading surface constructed for the previous moment. Thus the 

loading surface is intimately connected with the loading Criterion. If 

the loading surface is taken according to (21), then in view of the 

aforementioned, the loading criterion will be the condition 

when the equality sign corresponds’-to neutral loading. If @f/&s,,) x 
dS. < 0, we have a case of unloading. In the Hencky-Nadai and Handelman- 

LiAiPrager laws the condition d12 > 0 was accepted as the loading 

criterion. The corresponding loading surface is a sphere of the radius 

p = 1 P 1 . Accordingly, the introduction of the criterion d12 > 0 pre- 

supposes that the elastic range is experiencing a simple isotropic ex- 

pansion in the process of plastic deformation, which corresponds to uni- 

form work-hardening of the material. This is, however, not true, or true 

only approximately. Generally speaking, the process of work-hardening is 

a directed process, and the work-hardening itself has to be anisotropic. 

t The Mises sphere / P( = k is the initial loading surface. 
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(Since we limit ourselves here to the review of small deformations only, 

the anisotropy which occurs in the plastic deformation process has to be 

explained by the influence of the state of stress. Such a form of aniso 

tropy is called the anisotropy caused by stresses [12 I ). 

The task of experimental investigation of such changes. of the loading 

surface is rather complex, However, the mere concept of the loading sur- 

face, or loading function (which is the same), opens tremendous theo- 

retical possibilities. It turned out that the loading surface is not 

only used for determination of whether the material is being loaded or 

unloaded at the given point, but is related (associated) with the plasti- 

city law itself, so that a knowledge of the loading function permits to 

concretize substantially the stress-strain law. Furthermore, it became 

possible, using some rather general assumptions regarding the behavior 

of materials, to obtain some information with regard to the loading sur- 

face itself. 

Going somewhat back, we will note that when we derived formula (14). 

the loading criterion was formulated in advance, i.e. the law of changes 

of the loading surface was determined without consideration of assump- 

tions regarding stress-strain relations. It is interesting to see how 

the introduction of a different loading criterion will influence the 

final result, and to determine the relationship between the plasticity 

law and the loading criterion. 

Results of investigations of this type given in Prager’s article [15] 

can be summarized as follows. We will assume, just as we deduced the law 

(14). that: (1) the increments of the components of the strain deviator 

are completely determined by the stress deviator and its increment, (2) 

this relation is linear with respect to the increments, (3) the con- 

tinuity condition is valid. 

Inasmuch as we will not formulate the loading criterion in advance, 

and in order to obtain the most concrete relation between stresses and 

strains, we will require that the following supplementary conditions be 

satisfied: (4) when given forces are acting on the surface of the body, 

small increments of plastic deformation within the body are uniquely de- 

termined by the given small increments of surface and body forces (con- 

dition of uniqueness in the small), (5) loading surface at loading point 

has only one normal (condition of regularity of the loading surface) and 

(6) the loading surface changes continuously during the plastic deforma- 

tion process (continuity condition of the change of the loading surface). 

Let us consider some given state of stress characterized by stress 

vector P. We will consider only the case when the tip of the stress 

vector is touching the loading surface. Otherwise we would find ourselves 

in the elastic range, the laws for which have already been determined. 

If the tip of the stress vector is touching the loading surface. then an 



infinitely small change of the state of stress d P will either cause 

loading, or neutral loading or unloading, depending on whether dP is 

directed inside, tangentially to or outside the loading surface. To every 

vector dP directed outside the loading surface, there corresponds uni- 

quely a vector dEIP. The requirement of the continuity requires that as 

&n--O the vector dP is approaching the tangential direction to the 

loading surface. A vector dP directed outside the loading surface can be 

represented as a sum dP= dP,+ dPn,where dPtand dPn are vectors 

along the tangent and along the normal to the loading surface, at loading 

point P. But according to the continuity condition, the component dPt 

does not affect a change of 3n, hence a change of the plastic deforma- 

tion takes place only on account of dP,, and the direction ofdLIpdoes 

not depend on the direction of dP. It follows, that with each point P 

of the loading surface there is associated a corresponding unit vector n 

in such a way, that the increment of plastic deformation is effected by 

an infinitely small increment 

n. bet us now investigate the 

loading surface. 

of the stress vector dP in the direction 

relation between the unit vector n and the 

We will turn our attention 

given surface and body forces 

that 

to a body of work-hardening material with 

T and F, The theorem of virtual work states 

Here T,, F, crij correspond to equilibrium, and II, e ij are possible. 

;;“,;;; “k”oat(Y;5’e;fth;?i:;v~c 
increments of exte,rnal forces, two 
,( 2) 

The diffeiinces 
11 iJ 

, dcijt2) are possible within the body. 

Ad cij = doii(‘) - do ‘t), Ads.. -de. !l) - ds!?) 
t3 11 ‘3 

can be substituted into (23). even though R doij may not necessarily 

correspond to d dcij’. Hereby the left-hand side in (23) becomes zero, 

and we obtain 

c 
AdaiiAdai jdv = 0 (241 

c 
z) 

Thus, to satisfy the condition of uniqueness the requiremnt that the 

integrand be non-negative, is sufficient. In fact, frOm,,(24) it will 

follow then, that the solutions coincide. If we consider separately the 

elastic part in the integrand, which is always positive, then it is 

sufficient to require that h daijh dt ijp > 0. Since t ijP is a deviator. 

it follows that RdSijAdSijP > 0 or, in vectorial form 

AdP . AdB” ,) 0 (35) 
Let us now consider three possible cases: (a) both SOlUtiOnS Comes- 
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pond to loading, fbf one is unloading, the other loading. (c) both solu- 
tions result in unloading. 

In the last case Ada”=@ and, accordingly, the integrand in (24) is 
positive, Taking advantage of the fact, that in the other two cases the 
sequence in which the solutions are taken, does not influence the sign 
of AdP Ad@‘, we can select them in such an order that hdP be directed 
toward the outward normal. In case (a), in view of the presupposed 
linearity of the relations of increments of stress and strain Ad@ 
there is a solution which corresponds to hdP, and, in consequence, is 
directed along n. Thus in that case the inequality (25) expresses the 
condition that the scalar product of the vector n by any vector in the 
direction of the outward normal to the loading surface be non-negative. 
Consequently, vector n can onfy be the unit vector of the outward normal 
to the loading surface at point P. Accepting this definition for n, it 
is easy to see that the expression for AdP Ad& becomes non-negative 
in case (b) as well. 

Thus we arrived at the conclusion that the vector of increments of 
deformation is directed along the outward normal 
at point P. 

It remains now only to determine the value of 
ality coefficient in the law dP= dkn, which in 
may be written down as: 

to the loading surface 

the scalar proportion- 
tensorial representation 

(26) 

To determine dk we will use the continuity condition of the loading 

surface change, in view of which, if at the given state 

j (Sil, f * . ,31p, I . .) =const, 

then for a neighboring state 

j (&I + dSr1, * . . , 3,rp + d9l1p, . . .) = con& 
and. therefore 

j (Sir + dS, . . .311p + d31,~, . . .) - f (S11, . . . ,311~) = 0 

Hence, 
(af 1 aSij) dSij + (aj 1 dSiiP) d3ijP = 0 

Introducing (26). we arrive at a formula for dk 

and thus 

(27) 

(29) 

(W 

where 
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In deriving this law we have assumed an obvious dependence on plastic 
deformation. In the case when f obviously does not’depend on plastic de- 
formations, it is impossible to determine the coefficient through f. 
Taking advantage of the indeterminacy of dk in that case, we can again 
represent the result in form (29). Of course, formula (30) is not applic- 
able in that event, and F has to be determined independently of f. 

The problem of investigation of various analytical expressions of the 
loading function has gained considerable importance. Research in that 
field has been conducted by Edelman and Drucker [ 16 1. 

Any loading function has to satisfy the law of simple loading. That 
means that the relation (29) for the given function has to correspond 
satisfactorily with the experimental results of siatple loading. 
Naturally, the results will be more complete when the third invariant of 
the stress deviator is considered, rather than when this consideration 
is omitted, The most simple example of the loading function is f = I*, 
or f = f(I,). If, in addition to this, we assume that F = F(IZ), Laning’s 

law will follow from formula (29). 

The function f = f(I,.I,‘) corresponds better to simple loading data; 
however, as well’as the preceding one. it does not take into considera- 

tion the anisotropy due to stresses. By introducing the plastic deforma- 
tions into the loading function, we can take into consideration the last 
effect as well as the Bauschinger effect, as for example 

f = cf, (I*) - ~~~~s~j, 

or, if in addition to that the third invariant is also considered, 

f = @ (le, Isa) - m s*j9, jp 

It becomes apparent here that certain limitations have to be imposed 
on @. 

Thus it is quite obvious that a taking into account of the Bauschinger 
effect and of the anisotropy which takes place during the loading Process, 
‘leads to very complex plasticity laws which are scarcely applicable for 
practical use. Laning’s law is therefore the most frequently used plasti- 
city law, even though it is also the most approximate law of all. 

We have examined here in detail the logical considerations which 
result in the law (29), sometimes called the Hedge-Prager law. A change 
of the original assumptions results in a change of (29) and thus some 
other formulations of the plasticity law can be obtained. Assuming that 
deformations depend mainly on the loading history, Cunningham, Thomsen 
and Dorn [ 17 ] arrived at the law 

where K2 is the second invariant of the deformation velocity [Strain 
rate ] deviator. However, Prager [ 12 ] showed that this in essence CO- 
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incides with (14). If F is a monotonous function we can write down 

s 
V-z at = 0 (12) 

Upon differentiation we will obtain J’-z = 4 (12)(d12/dt), so that 
introducing this into law (31). we will itgain arrive at Laning’s formula, 
where we only have to put 

The most important factor in the change of the system of assumptions 
was the introduction of the work-hardening postulate, which was contained 
in the finalized version in Drucker’s paper [ 18 1, 

Below follows an interpretation of uniaxial work-hardening properties. 

In work-hardening materials the increments of strain and the corres- 
ponding increments of stress are such that their product is positive. If, 
in addition to the process of application of supplementary increments of 
stress, the process of their removal is considered also, then it can be 
said that in the indicated cycle the work of stress increments in strain 
increments is positive. The postulate of work-hardening is precisely a 
generalization of this property of the curve from a uniaxial test to the 
polyaxial case. It appears that the acceptance of that generalization 
puts some very rigid requirements on the plasticity law. As it was shown 
by Drucker not long ago, violation of the fundamental postulate of work- 
hardening can lead to an indeterminacy of the solution [lS 1, and thus a 
fulfilment of it for real materials in all probability is necessary. 

Let vector P* represent a state of stress at a given point of an 
elastic-plastic body, and let the tip of this vector be either within 
or on the loading surface. Let us further assume that additional external 
forces create at the given point of the body additional stresses, which 
displace the tip of the stress vector from within the loading surface to 
some point P on this surface. Only elastic deformations are produced in 
this process, and since elastic deformations are reversible, the state 
of strain at point P will not depend on the path of the stress vector 
from point P* to P. Further, supplementary external forces bring the 
stress vector outside the loading surface up to the value P + dP, so 
that small increments of plastic deformation occur. Then the supplement- 
ary external forces are removed just as slowly as they were applied, and 
the stress vector P returns to the original condition P* along some path 
(we are considering a homogenous state of stress). Since elastic work is 
reversible, the total work for the complete cycle of application and 
removal of supplementary forces will be 

According to the work-hardening postulate, this work will be positive. 
Since, in a particular case, we can take P* for P, the work-hardening 
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postulate yields 

dP.d3P>0 (32) 

If P - P* f 0, then this difference can be made arbitrarily larger 

than d P, and therefore 
(P-P*).d3Q/>O (33) 

Thus. on the basis of the work-hardening postulate, the vectors P-P* 

and d3Q have to form an acute angle, and accordingly all possible 

vectors P - P* must be iocated on one side of the plane perpendicular 

to the vector d3p, and this should be true of all the P’s on the load- 

ing surface. It follows that the loading surface is non-concave through- 

out. If it is true that the loading surface at a loading point has only 

one normal, it is easy to see from (32) that d3P is directed along the 

normal to the loading surface at point P. It should be noted that d3” 

cannot be directed inward to the loading surface, since dP.d3Q>O, and 

dP is directed outward. 

Thus, only from accepting the postulate of work-hardening and from 

the condition of regularity of the stress point it follows that 

dsij = dk (a/ / aSii) 

The condition 

$ dSij > 0 
zj 

remains, as previously, the loading criterion 

Inasmuch as dk is undetermined, it is justified to say thatt 

where F may depend on stress, strain and deformation history. This 

function, in particular, may also depend on dSij. but then it has to 

homogeneous,f zero order with respect to dSij, since time effects in 

plasticity are excluded. For example 

(dSij dSjk dS,J2 

’ + -(dS,, dS,,)” I 

(34) 

(35) 

be 

where g does not depend anymore on d‘Sij. The function F does not have to 

depend on dSij at all, if we require differential linearity of the rela- 

tion between stress and strain. 

We have considered various forms of differential stress-strain laws 

or laws of flow, which express the increment or differential of strain 

through .some stress operator. In some applications, such as in problems 

of stability beyond the elasticity limit, those relations have to be 

solved with respect to the increments of stress. Such inversions of the 

laws of flow are sometimes connected with considerable difficulties, 

hence the idea of direct establishment of flow laws in terms of depend- 
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ence of stress increments on strain, strain increments. etc.. is quite 
justified. 

Such a theory of flow in terms of stresses was developed by Trifan 
[20 ] and was based on the following suppositions: (1) The increments of 
stress are completely determined by strain and increments of strain, 
(2) this relation is assumed to be differentially linear, (31 the con- 
dition of continuity holds, and (4) the condition dp > 0 is accepted as 
the loading criterion, where g is a function of the invariants E2 and ‘i; 
of the strain deviator. For simplicity purposes, we limit ourselves to 
the consideration of only one specific case, namely when p is a function 
of E2 only and,accordingly. it can be assumed that dq = 3iid3ij* 

(Taking into account the third strain deviator leads to a tensorially 
non-linear theory, which will not be considered here). 

If ;lq=3ijd3ii I then it is easy to see that the system of the above- 
mentioned four suppositions is simply a reversal of the system used by 
Handelman, Lin and Prager. Therefore, the derivation of the expression 

for dS.. will be almost a literal repetition of the deductions made by 
those t “h ree authors. As a result it is easy to obtain 

dsi j = 2G d 3, j - kij dq (36) 

where 
k~j = P (E,) 3ij 

Flow theories analogous to the one just presented have received little 
popularity, and as far as we know no attempt has been made to generalize 
them with respect to an arbitrary loading criterion. 

In the entire material which was discussed previously, the regularity 
of the loading function surface at the point of loading was assumed. 
However, already the application of the criterion of maximum shear stress 
offers an example of a loading surface with some singular points. It is 
true. though, that in this case the singular points are stationary and 
may not correspond with the loading point. It can be expected, however, 
that it is just the loading point that at all times is singular. It is 
possible that such a supposition occurred for the first time in the * 
explanation of the torsional loss of stability; there is no doubt, how- 
ever, that the main role in establishing the concept of the singular 
loading point was played by investigations of plasticity properties, 
based on considerations of the microstructural mechanisms of plastic 
slip. 

Essential in such investigations is the consideration of the crystal- 
line structure of the material. The real body is visualized as an 
aggregate of a large number of arbitrarily oriented monocrystals. Con- 
sequently, the plastic properties of the body may be assumed as 
statistical means of plasticity properties of individual crystals and 
also of the properties of their interaction, The last two groups of 
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properties we Will call microplasticity properties. Modern plasticity 

theories based on swt! an approach are frequently called physical 
theories. which is a hardly justifiable designation. A truly physical 
theory we would cons-ider a theory which, based on microplastic proper- 

ties, would Yield all the macrocharacteristics of the material. But con- 

temporary schools of thought in that direction follow a so to speak 

“semi-inversed” way to describe the combined loading process. Instead of 

giving completely the microplastic properties, they are prescribed with 
some amount c@ indeterminacy, and the latter is eliminated later only in 

an average way with the aid of reference to the macroexperiment~ This 

leads to Only a conditional acceptance of the term nphysicaln for the 

theories mentioned below, quite aside from the fact that the micro- 

Plastic properties with which those theories deal are rather primitive. 

It is known from experiments [21 ] that plastic deformation in a 

monocrystal is essentially determined by shearing along definite planes, 

called glide [or slip I planes, and the directions in them, called 

directions of slip. The slip plane, together with a direction of slip on 

it, is known as a slip system, The magnitude and orientation of slip 

systems is determined by the form. of the &‘rystal lattice of the material. 

It should be stressed that in order to determine the orientation of 

a slip system, i.e. of a system {onsisting of a plane and a direction, 

three independent parameters have to be given. 

Since it has been established that the pressure normal to the slip 

plane has hardly any influence on plastic deformation of the crystal, its 

plastic properties are determined by the relation of shear stress com- 

ponents in slip systems to the plastic shear strains in those systems. 

Various theories differ in the manner in which they postulate the 

plasticity properties in the slip systems (in the following we will 

designate the summation of such properties by the letter A), and the way 

they determine the properties on crystal boundaries U3 properties). The 

material is considered to be quasi-isotropic, and as a result of that 

any orientation of slip systems is presumed to be equally probable in 

volume, containing a sufficient amount of monocrystals (for example, the 

experimental tubular specimen). 

The first theory proposed by that school of thought for description 

of plasticity praperties at combined loading, was the so-called slip 

theory of Batdorf and Budiansky [22 1. Following is the essence of the 

basic assumptions of this theory: 

A. It is assumed that each monocrystal has only one Slip system. The 

plastic shear ylt in this system depends on the maximum Component of 

shear stress assumed during the entire loading history and takes place 

only if r becomes larger than some limiting value r~. 

B. The state of stress in each crystal is the same and coincides with 
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the state of stress of the entire aggregate. 

Let the parameters, which determine the orientation of some slip 

system with respect to the fixed axes , be d. p, y. The component r of 

the shear stress active in this system, can be expressed through 

stresses in the fixed axes X, y, z with the aid of c1, ,8, y. The plastic 

shear in this slip system w.ill be by definition 

yp = F(T), 

where F is a still unknown function. Through yp and 01. ,6, y we can 

determine the plastic strains 35, which occur along axes X, y, z as a 

result of plastic deformation in systems with the given orientation 

where C$ ij is a determined function of its variables. Since any orienta- 

tion of slip systems is equally-probable, we can, by means of averaging, 

obtain 35 for macrodeformation 

F (T)‘Y[j (a, 6, Y) da d9 dy (33) 

Actually, we performed a summation of all possible orientations, but 

in view of the indeterminacy of the function F we can consider this an 

averaging.? 

The function F, or the characteristic function, can be determined, 

for example, from an experiment on uniaxial tension by the method of 

series expansion and subsequent numerical integration. A specific form 

of dependence of F from r /r L and, accordingly, dependence of plastic 

shearing from shear stress in the unique slip system of a monocrystal. 

is shown in Fig. 1. 

Fig. 1. 

Thus, to obtain a logical inference of the macro-connection “stress- 

strain” from premises A and B, which would not contradict the experiment 

on uniaxial loading, it is necessary to assume that the monocrystal 

possesses work-hardening in its unique slip system. 

T It seems to us that the method of deduction used here, which differs 

from the one employed by Batdorf and Budiansky [22 I, emphasizes stronger 

the “physics” (in the above-named limited sense) of the slip theory. 
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Let ns bring into evidence the main qualitative results that follow 

from the slip theory. Let a simple loading beyond the limit of elasti- 

city take place at a given point of the body. If the material was 

initially isotropic, then the loading surface has to be symmetrical with 

respect to the loading direction. It follows that if there is no singu- 

larity at the loading point, then any orthogonal loading that follows 

the simple loading (at a right angle to the previous simple loading) 

wili be neutral at the initial moment. At this initial moment the ortho- 

gonal loading is characterized by 1 PI = p = const., i.e. the stress in- 

tensity is constant. In view of the continuity condition we are justified 

to say that if an increment of plastic deformation is obtained at the 

initial moment of orthogonal loading, then there has to be a conical 

singularity at the loading point. 

The slip theory precisely predicts an increment of plastic deformation 

for orthogonal loading. Indeed, at simple loading an unequal work-harden- 

ing in different crystals takes place. Moreover, some crystals may not 

harden at all. If orthogonal loading takes place thereafter, then in view 

of redistribution of stresses a plastic deformation in some crystals 

which did not harden yet, or did not harden sufficiently, will set in. 

This will result in an increment of the overall plastic deformation. 

A particular case of orthogonal loading is the pure shear which 

follows simple tension-compression. In tests on tubular specimens this 

is realized by torsion at constant axial stress. As we have observed, 

increments of plastic deformation even at the initial moment have to 

occur. It is interesting to determine the direction of the vector of 

increments of plastic strain in this process. A partial answer to this 

question is given by the value of the so-called instantaneous shear 

where u and r are tension-compression and shear stresses, respectively 

and y is the total shear strain. 

If G = Ci, i.e.* the elastic shear modulus equals the instantaneous 

plastic modulus, then the vector of increments of plastic deformations 

at orthogonal loading is either a zero vector (no singularity at loading 

point), or has the direction of initial simple loading. If, however, Gi 

differs from G, then the conical singularity necessarily exists (if the 

continuity condition is valid) and the vector of increments of plastic 

deformations makes a finite angle with the initial simple loading 

direction. 

Direct calculations made by Cicala [23 ] on the basis of the slip 

theory, resulted in the following values for Gi : 
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Authors of this theory have jointly with other researchers conducted 

an experimental check of the slip theory 124 1, and established some of 

its advantages compared to the flow and deformation theories. Nowever, 

in the initial tests on experimental determination of the instar~tsneous 

shear modulus Gi, it was not possible to discover a sizeable deviation 

from the elastic value. A deviation (smaller though, than suggested by 

the slip theory) was only discovered somewhat later, and it is quite 

possible that lack of snccess of the initial tests in determining Gi was 

due to the fact that the torsion of the tested specimens occurred at 

very small (elastic range) axial plastic deformation . t 

At any rate, it can be safely stated that the predictions of t!le slip 

theory, as to the value of the instantaneous shear modulus, could stand 

some improvement. As for the reason of the inadequacy of this theory, it 

is contained in its basic assumptions, First (point A), the supposition 

of the uniqueness of the slip system in a monocrystal is a great simpli- 

fication of the actual state of affairs. Secondly and mainly, the 

supposition expressed in point B as to the random orientation of 

crystals, in essence contains the possibility of fracture on crystal 

boundaries and is chiefly responsible for the inadequacy of the theory. 

Even though the deficiencies of the basic assumptions in the final 

law relating stresses and strains are to some extent improved by the de- 

termination of the characteristic function from the macroexperiment, the 

slip theory still remains extremely simplified. 

In 1954 Lin proposed a new version [25 I, whose aim it was to improve 

some of the deficiencies of the slip theory. 

Lin’s basic assumptions are reducible to the following. 

A. Several slip systems exist in a monocrystal. The active ones (i.e. 

such systems in which a plastic shear takes place at the given moment) 

are systems which correspond to the minimum work at the given deformation 

of the crystal. The shear stress components in such active systems are 

equal to each other, and their magnitude depends on the sum of slips in 

the given crystal. 

B. The deformation of all crystals is alike and coincides with the 

deformation of the aggregate as a whole. The state of stress of the 

aggregate is obtained as an average of states of stress of component 
crystals. 

The assumptions A and B are still too complex for the derivation of a 

$ This supposition was first expressed by A.M. Zhukov and Iu. N. Rabotnov 

in their paper [ 30 1. 



stress-strain relation. Therefore, the author introduces additional 
suppositions of a simplifying nature. Inasmuch as it is not our objective 

to obtain a mathematical formulation, we will not consider Lin’s simpli- 

fied theory. We will only state that in our opinion, contrary to Lin’s 

aSSertiOn. the equality of Gi and of the elastic shear modulus does not 

follow from the simplified version of the theory,whereas it is probably 

true for the initial suppositions A and B. 

Some basic qualitative conclusions from the suppositions A and B may 

be easily obtained from the model of a “plane” polycrystalline body. We 

have in mind an aggregate of monocrystals, having the following proper- 
ties: in each monocrystal of the aggregate, the shears take place in one 

plane only. which is a common plane for all of the crystals. Otherwise, 

the orientation of the crystals is arbitrary. Of course, in order to 

fully utilize the simplifying Properties of a “plane” body, we have to 

apply the external loading, too, in a plane which is characteristic for 

this body. 

Let us assume that there are three possible directions of slip in the 

characteristic plane of each crystal which form 60’ angles to each other. 

(This is characteristic for slip planes of metals with a face-centered 

cubic lattice, typical for aluminum and its alloys). The active 

directions will be only the two that are closest to the direction of 

the resulting shear. Inasmuch as the shear stress components along these 

are always equal, the resulting shear stress is always along the bisect- 

ing line of the angle, which is defined by those two directions. Since 

the direction of the resulting shear strain also lies within this angle, 

the maximum difference between it and the resulting shear stress can 

amount to 30’. In simple loading the direction of the resulting shear 

strain y. is constant, and according to B equal for all crystals. In 

view of that, the active sliP directions are constant in each crystal. 

Let us now assume that an increment of stress has been Produced, which 

is other than simple. This will result in an additional shear strain in 

each crystal (Fig. 2). rf the direction of such an additional shear in 

some crystal does not go beyond the limits of the angle formed by the 

initial directions of shear, there will be no change of the active slip 

directions and the direction of the resulting shear stress in this 

crystal will remain unchanged. However small the angle a made by the 

vectors il y and y. might be, there will always be a crystal on the 

characteristic plane of the given crystal, whose active slip directions 

will undergo changes, (yl to y3. This will take place in such crystals 

where the direction y2 is closer to y. than A y). In these crystals a 

directional change of the resulting shear stress will take Place. and 

consequentfy, an increment of the shear stress -47 will also take place. 

For the whole body these increments will result in some increment of the 

total (average) stress. It is not hard to notice that the relation bet- 
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ween this increment and the angle is continuous and that h uij total = 0 

corresponds to c1 = 0. 

Fig. 2. Fig. 3. 

(The process of averaging is to be kept in mind; for example, when c1 

is small, the amount of crystals in which a change of the active slip 

directions will take place, 

be small, too). 

is also small, accordingly A uij total will 

Hence it can be asserted that during any sharp change of 

stresses (broken loading curve) in the considered body, the deformation 

curve will be smooth. That means that the instantaneous shear modulus 

will equal to its elastic value. 

It is obvious from Fig.2. that without interrupting [stopping I 

plastic deformation in a crystal of average orientation, A r may have a 

component in a direction which is opposite to the direction of the initial 

simple deformation. This indicates the presence of a conical (angular) 

singularity of the loading surface (for a “plane” body of the loading 

curve) at the loading point. 

We have considered the applications of the basic stipulations A and 

B to a plane scheme. The same conditions, only in a more complex form, 

will be true for a three-dimensional model. 

Comparing the conclusions of the two theories considered, we might 

say that both the slip theory and Lin’s theory predict the occurrence of 

a conical singularity at the loading point, but differ insofar as the 

slip theory predicts a breaking of the plastic deformation path at ortho- 
gonal loading, and Lin’s theory does not. In Fig.3, a corresponds to slip 

theory and b to Lin’s theory. 

Finally, it should be mentioned that Lin’s simplifying propositions 

reduce essentially to the assumption that every plane in a real material 

has the properties of the above-mentioned “plane” body. The behavior of 

such planes is assumed to be independent, and the total plastic deforma- 

tion of the aggregate is obtained by summation of the plastic deformations 

on all such planes. In the case of orthogonal loading, besides the effects 

in a “plane” body, which we considered previously, the effect of inclu- 

sion of plastic behavior of non-hardened or not sufficiently hardened 
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Planes must take place, which, in principle, is similar to the slip 
theory. Hence, it is impossible to expect that the equation Gi = G holds, 

as was pointed out above. 

A theory recently proposed by Malmeister [26 1, is rather close to 
the two plasticity theories described above. 

The following is the essence of the basic propositions of the Mal- 

meister theory. It is assumed that plastic deformation in the neighbor- 

hood of the given point of the body is determined by shears in ail 

possible planes. In every such plane the plastic shear depends on the 

shear stress on this plane only. The behavior in each plane is inde- 
pendent. 

It is not hard to see that the mathematical formulation of hlalmeis- 

ter’s theory will differ from the slip theory formulation only insofar 

as one integration will be missing (integration along the angle on each 

plane). Naturally, in relation to this, the characteristic function will 

be different from that in the slip theory. The qualitative result of 

that change will be such that the conicity of the loading point, as well 

as the breaking angle of the plastic deformation path at orthogonal load- 

ing, will be smaller than in the slip theory. Allthis is a result of the 

hardening process, which takes place uniformly in all directions on each 

plane, contrary to the slip theory. For an arbitrary change of shear 

stress on a given plane, plastic deformations do not take place with the 

decrease of its value. Thus, at orthogonal loading, increments of plastic 

deformation occur only on account of the inclusion of the plastic be- 

havior of non-hardened or not sufficiently hardened surfaces (their 

number is m 2), and not slip systems ( CC ?), as in the slip theory. In 

connection with this, the total increment of strain will be smaller than 

in the slip theory, and a smoothing of all effects will take place. 

Hence, from the standpoint of any of the three plasticity theories 

mentioned above, the loading surface in the process of plastic deforma- 

tion changes so that the loading point in it is conical. From the mathe- 

matical formulation standpoint, their joint characteristic is that the 

relation “stress-strain” contains multiple integrals and involves con- 

siderable mathematical difficulties even in the determination of the 

dependence of deformation on loading for homogenous stress conditions. 

The concept of the conical loading surface enjoys a considerable PoPular- 

ity, and the natural tendency becomes apparent to evolve such a Plasti- 

city theory, which, along with greater simplicity, would incorporate this 

main feature of the considered theories. 

The initial step in this direction was taken by Koiter [ZT 1 and 
resulted simply in an expansion of the Hodge-Prager relations by way 

of introducing numerous loading functions. This school of thought can be 

characterized as a nreconciliation” Of the gradient principle (the plastic 
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strain increment vector is a gradient of the loading function for a 

portion of the loading surface with a continuous tangential plane) and 

the concept of the conical point on the loading surface. 

As previously stated, the loading function in the stress space deter- 

mines the loading surface. In the case when the loading surface has some 

singularities it can be represented as the envelope of some regular sur- 

faces. Each such surface determines some regular loading function f c1 

and thus, in accordance with the Hodge-Prager law, determines the incrk- 

ment of the plastic deformation vector with the accuracy to a scalar 

factor. If we were to assume the independence of each of the above- 

mentioned loading functions, the total plastic deformation could be 

described as a sum of plastic strain increments determined by each load- 

ing function 

(3% ., 
8fcl 

C, > 0 if a~,j dSij 2 0, G,=O if $dSij<O 
G 

Koiter showed that the slip theory is a special case of the above- 

mentioned concept and corresponds to an infinite number of plane loading 

surfaces. 

Plane loading surfaces are the most simple elements of such theory, 

and therefore future investigations of the relation proposed by Koiter 

were conducted on the basis of plane loading surfaces. Saunders’ [28 1 

paper is one of such investigations, where it is assumed that separate 

plane loading surfaces are displaced parallel to each other in the 

plastic deformation process. In this case each loading function is a 

linear function of stresses and the Hodge-Prager relations may be 

partially integrated for each one of them. (It is shown in the paper 

that conversely as well, unique integrated stress-strain relations will 

be those for which f = const. represents a plane in stress space). 

Saunders’ implications clearly permit to construct a loading surface for 

any given point of any arbitrary loading path. Clearly, only such plane 

loading surfaces, which have one common point with the stress vector, are 

displaced in the plastic deformation process. In view of the independence 

of their actions, each loading plane can move in one direction only, 

opposite to the origin of the coordinates. The supplementary supposition 

on the parallelism of displacement of individual loading planes gives 

immediately the method for the construction of the loading surface, as 

is seen from Fig. 4 (plane case). This figure shows two versions for the 

construction of the loading surface: (a) if the initial loading surface 

(indicated by shading) is a polyhedron; (b) if the initial loading sur- 

face is smooth. In the last case the construction method is the envelope 
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method, or the method of external tangents, Insofar as the total plastic 
deformation is determined by the sum of plastic deformations, which 

correspond to individual loading planes, it stands to reason that it will 
be equal for all loading paths which determine the same loading surface. 

It is easy to see that if the initial loading surface is smooth and 
closed, such as for example, the Mises surface, then for the determina- 

tion of the initial and of all subsequent loading surfaces an infinite 

number of plane surfaces has to be considered. From the set assumptions 

it follows then that a conical singularity appears at the loading point 

during a continuous plastic deformation. 

Fig. 4. Pig. 5. 

Below we will describe the results for a plane loading path when the 

plane surfaces can be represented as straight lines. 

First, only two loading surfaces fl and f, are relevant at loading 

point (Fig. 51. Secondly, the direction of the plastic strain increment 

vector depends on the direction dPand on the normals to the surfaces 

fl and f2 in the following manner. If dP is directed toward the elastic 

region 1, then the plastic strain increment equals zero. If dP is 

directed toward region 3. then the plastic strain increment vector d3P 

can be only within the angle y. If dP falls into the regions 2 or 4, 

then d3n coincides with the normal to f, or f2. 

It is also important to cIarify 

ence in Koiter’s relations. 

the problem of differential depend- 

The most widespread plasticity laws (~encky-Nadai, Laning) are 

differentially linear f, if, as it is usually the case with the majority 

of questions of practical importance, the unloading process is excluded. 

Thus, if we consider the continuous process of plastic deformation 

(active process), then the above-mentioned theories have all the remark- 

able properties of differentially linear relations. Contrary to that, 

the differential relations of Koiter, even in an active process, cannot 

be considered differentially linear in the full sense of the word. The 

truth of the matter is. that for many loading functions the presence of 

a “partial plasticity” region, such as regions 2 and 4 in Fig.5, is 

t . Linear with respect to stress and strain increments. 
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characteristic. These regions play the same role in the violation of 

the superposition principle, as do elastic regions in usual plasticity 

laws. But inasmuch as the existence of such regions is determined by the 

loading condition, it may be said that the differential non-linearity of 

Koiter’s law is inherent in the loading conditions. 

In this connection we will mention the plasticity theory recently 

proposed by Warner and Handelman [29 1. Even though this theory in its 

final formulation does not essentially differ from Koiter’s theory, it 

claims more generality and independence from the Hodge-Prager relations 

by its development of more general implications from a lesser amount of 

assumptions. However, the deductions themselves of Warner and Handelman 

relations seem questionable to us, since the authors use essentially the 

properties of differential linearity of the relation, which are sub- 

sequently violated by the accepted loading condition. Differential 

linearity of the relation “stress-strain” is obtained as a consequence 

of a series of assumptions regarding independence of plastic behavior 

from time and continuity of partial derivatives of strain rates as a 

function of stress velocities over the entire defined range. But as soon 

as a loading criterion, which accounts for the appearance of various 

plasticity regions is introduced. the second of the initial assumptions 

is violated. 

The above-mentioned considerations regarding the behavior of a load- 

ing surface and, in particular, the existence of a conical point on the 

loading surface, require direct experimental investigation. As mentioned 

previously, initial attempts to determine the instantaneous shear modulus 

resulted in the equality Gi = G. This result appeared to be rather 

peculiar, especially in connection with the phenomena of torsional loss 

of stability. Therefore experimental attempts continue to prove that 

Gi = G. In 1954 two papers on the subject were published, one by Zhukov 

and Rabotnov [30 I and the other by Naghdi and Rowley [31 ] . The first 

paper explores the behavior of tubular steel specimens, the second that 

of aluminum alloys. Both papers establish that the instantaneous shear 

modulus depends on the magnitude of tensile stress and may be consider- 

ably smaller than the elastic shear modulus. The latter fact was sub- 

sequently supported by Sveshnikova’s experiments [32 I with copper-brass 

and duralumin specimens. If the principle of continuity is to be con- 
sidered valid, then these results indicate the conicity of the loading 

point. At the same time they confirm the effect of a sharp break in the 

deformation path at orthogonal loading. 

Feigen 133 1 describes his experiments, conducted on aluminum alloy 
specimens with very small torsional moments in relation to large tensile 

forces. The dependence of the instantaneous shear modulus on the tensile 
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force was observed; however. the deviation from the elastic value was 

considerably smaller than in the two papers just mentioned. Feigen’s 

experiments are interesting since they confirm directly the occurrence 

of the breaking effect of the plastic deformation trajectory. 

Comparing experimental data with deductions of the flow theory 

(Laning’s law) and of the deformation theory, Feigen concludes that the 

experimental data for stepwise loading which he performed, lie between 

the values obtained on the basis of those theories. 

Important are two experimental papers by Hu and Marin. In the first 

[34 I. the behavior of a loading surface in the plastic deformation 

process is studied. The authors ascertained that during this process 

changes of the loading surface cannot be accounted for by mere isotropic 

expansion or rigid displacement. It is not hard to see that this con- 

clusion rejects the principle of independent action of every one of the 

numerous loading surfaces (this is particularly clear on the example of 

plane loading surfaces). 

In the second paper by Hu and Marin [ 35 1 special attention is given 
to plastic deformations for a special loading path, which, for purposes 

of brevity, we will call circular. It is followed in this manner: the 

material is brought into the plastic range, then (beginning of circular 

loading) the stress vector describes, on some plane of the vectorial 

space, an arc of a circle 

1 P 1 = const 

For any plasticity theory in which the condition dip > 0 is the load- 

ing criterion,. circular loading is neutral, and a change of plastic de- 

formation should not take place along this path. Contrarily to this, 

experiments have shown that at circular loading a change in the plastic 

deformation takes place which is so considerable that it cannot be ex- 

plained by inaccuracy of the experiment or by anisotropy. From the data 

Fig. 6. 

cited in the paper, the following qualitative picture of plastic deforma- 

tion change at circular loading is obtained: if S is a measure of tp 
length of the path traced by the tip of the stress vector, and eip is 

the increase of the intensity of plastic deformations above the constant 

intensity which was achieved at the beginning of qhe circular loading, 

then the specific form of the relation between eiP and S may be repre- 

sented as follows (see Fig.6). It should be noted that the Hu and Marin 

experiments encompass all states of biaxial tension, from simple tension 
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in one direction to simple tension in the other direction. 

The second paper of Hu and Marin also attempts to determine experi- 

mentally a portion of the loading surface (more correctly, curve, since 

a plane loading path is considered) for the given point of the loading 

path. It was proved that this part of the loading surface is close to 

the one which is predicted by the slip theory. 

Summarizing the results obtained from experimental research, it should 

be said that until now only insufficient results that are quantitative 

and reliable were obtained with respect to change of surface loading, 

breaking of plastic deformation curve, conicity of the loading point, 

etc., so that intensive research in those directions is warranted. This 

is the reason why we were attempting, in this paper, to avoid a dis- 

cussion of the quantitative aspects, and it might be said that the 

quantitative factor varied in the experiments of various authors to an 

extent that seems paradoxical at the modern level of experimental techni- 

ques. This is especially applicable to the determination of the instanta- 

neorls shear modulus. 

Things look much better with respect to the qualitative side of the 

matter. It seems to us that there is every reason to believe already 

now that the instantanenrs shear modulus differs from the elastic modulus 

in the plastic range and depends on the magnitude of the stress at which 

orthogonal loading was effected. Related to it is the existence of the 

breaking effect of the plastic deformation curve at orthogonal loading. 

There is no doubt that at circular loading, a change of plastic deforma- 

tion takes place. 

Even if we were to assume that the presently available data are not 

sufficient to definitely assert the existence of a conical loading point, 

nonetheless the concept of the conical point is almost the only hypo- 

thesis for the explanation of the above-mentioned phenomena. 
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